
-- Authors: Bas van Gijzel and Henrik Nilsson
-- See: http://www.cs.nott.ac.uk/ bmv/CarneadesDSL/index.html

module CarneadesDSLWithCycleChecking where

import Prelude hiding (negate)
import Data.Graph.Inductive
import Data.Map (Map)
import Data.List (nub)
import qualified Data.Set as Set
import qualified Data.Map as Map
import Data.Maybe (fromJust)

-- Based on initial code provided by Stefan Sabev
cyclic :: (DynGraph g)⇒ g a b → Bool
cyclic g | ¬ (null leafs) = cyclic (delNodes leafs g)
| otherwise = ¬ (isEmpty g)
where leafs = filter (isLeaf g) (nodes g)

isLeaf :: (DynGraph g)⇒ g a b → Node → Bool
isLeaf g n = n /∈ map fst (edges g)

0.1 Arguments

As our ultimate goal is a DSL for argumentation theory, we strive for a realisation in Haskell that
mirrors the mathematical model of Carneades argumentation framework as closely as possible.
Ideally, there would be little more to a realisation than a transliteration. We will thus proceed by
stating the central definitions of Carneades along with our realisation of them in Haskell.

Definition 1 (Arguments) Let L be a propositional language. An argument is a tuple 〈P,E, c〉
where P ⊂ L are its premises, E ⊂ L with P ∩ E = ∅ are its exceptions and c ∈ L is its
conclusion. For simplicity, all members of L must be literals, i.e. either an atomic proposition
or a negated atomic proposition. An argument is said to be pro its conclusion c (which may be a
negative atomic proposition) and con the negation of c.

In Carneades all logical formulae are literals in propositional logic; i.e., all propositions are
either positive or negative atoms. Taking atoms to be strings suffice in the following, and propo-
sitional literals can then be formed by pairing this atom with a Boolean to denote whether it is
negated or not:

type PropLiteral = (Bool ,String)

We write p for the negation of a literal p. The realisation is immediate:

negate :: PropLiteral → PropLiteral
negate (b, x) = (¬ b, x)

We chose to realise an argument as a newtype (to allow a manual Eq instance) containing a
tuple of two lists of propositions, its premises and its exceptions, and a proposition that denotes
the conclusion:

newtype Argument = Arg ([PropLiteral], [PropLiteral],PropLiteral)
deriving Ord

Arguments are considered equal if their premises, exceptions and conclusion are equal; thus ar-
guments are identified by their logical content. The equality instance for Argument (omitted for
brevity) takes this into account by comparing the lists as sets.

1

-- Manual Eq instance for set equality on premises and exceptions
instance Eq Argument where
(Arg (prems, excs, c)) ≡ (Arg (prems ′, excs ′, c′))

= Set .fromList prems ≡ Set .fromList prems ′ ∧
Set .fromList excs ≡ Set .fromList excs ′ ∧
c ≡ c′

showProp :: PropLiteral → String
showProp (True, c) = c
showProp (, c) = ’-’ : c

instance Show Argument where
show (Arg (prems, excs, (True, c))) = show (map showProp prems) ++ ’ ’ : ’~’ : show (map showProp excs) ++ "=>" ++ show c
show (Arg (prems, excs, (, c))) = show (map showProp prems) ++ ’ ’ : ’~’ : show (map showProp excs) ++ "=>" ++ show (’-’ : c)

A set of arguments determines how propositions depend on each other. Carneades requires
that there are no cycles among these dependencies. Following Brewka and Gordon [?], we use a
dependency graph to determine acyclicity of a set of arguments.

Definition 2 (Acyclic set of arguments) A set of arguments is acyclic iff its corresponding
dependency graph is acyclic. The corresponding dependency graph has a node for every literal
appearing in the set of arguments. A node p has a link to node q whenever p depends on q in the
sense that there is an argument pro or con p that has q or q in its set of premises or exceptions.

Our realisation of a set of arguments is considered abstract for DSL purposes, only providing
a check for acyclicity and a function to retrieve arguments pro a proposition. We use FGL [?] to
implement the dependency graph, forming nodes for propositions and edges for the dependencies.
For simplicity, we opt to keep the graph also as the representation of a set of arguments.

-- Note that for practical purposes we do not need to know the following
-- implementation but can use the abstraction further below

type ArgSet = Gr (PropLiteral , [Argument]) ()

-- abstraction of ArgSet and the operating functions on it
type ArgSet = ...

getArgs :: PropLiteral → ArgSet → [Argument]
-- checkCycle :: ArgSet -¿ Bool

0.2 Carneades Argument Evaluation Structure

The main structure of the argumentation model is called a Carneades Argument Evaluation Struc-
ture (CAES):

Definition 3 (Carneades Argument Evaluation Structure (CAES)) A Carneades Argu-
ment Evaluation Structure (CAES) is a triple

〈arguments, audience, standard〉

where arguments is an acyclic set of arguments, audience is an audience as defined below (Def. 4),
and standard is a total function mapping each proposition to to its specific proof standard.

Note that propositions may be associated with different proof standards. This is considered
a particular strength of the Carneades framework. The transliteration into Haskell is almost
immediate1:

newtype CAES = CAES (ArgSet ,Audience,PropStandard)

1Note that we use a newtype to prevent a cycle in the type definitions.

2

Definition 4 (Audience) Let L be a propositional language. An audience is a tuple 〈assumptions,
weight〉, where assumptions ⊂ L is a propositionally consistent set of literals (i.e., not containing
both a literal and its negation) assumed to be acceptable by the audience and weight is a function
mapping arguments to a real-valued weight in the range [0, 1].

This definition is captured by the following Haskell definitions:

type Audience = (Assumptions,ArgWeight)
type Assumptions = [PropLiteral]
type ArgWeight = Argument →Weight
type Weight = Double

Further, as each proposition is associated with a specific proof standard, we need a mapping
from propositions to proof standards:

type PropStandard = PropLiteral → PSName

data PSName = Scintilla
| Preponderance | ClearAndConvincing
| BeyondReasonableDoubt | DialecticalValidity

deriving Eq

psMap :: PSName → ProofStandard

A proof standard is a function that given a proposition p, aggregates arguments pro and con p
and decides whether it is acceptable or not:

type ProofStandard = PropLiteral → CAES → Bool

newtype ProofStandardNamed = P (String ,PropLiteral → CAES → Bool)
instance Eq ProofStandardNamed where
P (l1 ,) ≡ P (l2 ,) = l1 ≡ l2

This aggregation process will be defined in detail in the next section, but note that it is done
relative to a specific CAES, and note the cyclic dependence at the type level between CAES and
ProofStandard .

The above definition of proof standard also demonstrates that implementation in a typed
language such as Haskell is a useful way of verifying definitions from argumentation theoretic
models. Our implementation effort revealed that the original definition as given in [?] could not
be realised as stated, because proof standards in general not only depend on a set of arguments
and the audience, but may need the whole CAES.

0.3 Evaluation

Two concepts central to the evaluation of a CAES are applicability of arguments, which arguments
should be taken into account, and acceptability of propositions, which conclusions can be reached
under the relevant proof standards, given the beliefs of a specific audience.

Definition 5 (Applicability of arguments) Given a set of arguments and a set of assumptions
(in an audience) in a CAES C, then an argument a = 〈P,E, c〉 is applicable iff

• p ∈ P implies p is an assumption or [p is not an assumption and p is acceptable in C] and

• e ∈ E implies e is not an assumption and [e is an assumption or e is not acceptable in C].

Definition 6 (Acceptability of propositions) Given a CAES C, a proposition p is acceptable
in C iff (s p C) is true, where s is the proof standard for p.

3

Note that these two definitions in general are mutually dependent because acceptability de-
pends on proof standards, and most sensible proof standards depend on the applicability of argu-
ments. This is the reason that Carneades restricts the set of arguments to be acyclic. (Specific
proof standards are considered in the next section.) The realisation of applicability and accept-
ability in Haskell is straightforward:

applicable :: Argument → CAES → Bool
applicable (Arg (prems, excns,))

caes@(CAES (, (assumptions,),))
= and $ [p ∈ assumptions ∨

(negate p /∈ assumptions ∧
p ‘acceptable‘ caes) | p ← prems]

++
[(e /∈ assumptions) ∧

(negate e ∈ assumptions ∨
¬ (e ‘acceptable‘ caes)) | e ← excns]

acceptable :: PropLiteral → CAES → Bool
acceptable c caes@(CAES (, , standard))

= c ‘s‘ caes
where s = psMap $ standard c

0.4 Proof standards

Carneades predefines five proof standards, originating from the work of Freeman and Farley [?,
?]: scintilla of evidence, preponderance of the evidence, clear and convincing evidence, beyond
reasonable doubt and dialectical validity. Some proof standards depend on constants such as α, β,
γ; these are assumed to be defined once and globally. This time, we proceed to give the definitions
directly in Haskell, as they really only are translitarations of the original definitions.

For a proposition p to satisfy the weakest proof standard, scintilla of evidence, there should be
at least one applicable argument pro p in the CAES:

scintilla :: ProofStandard
scintilla p caes@(CAES (g , ,))
= any (‘applicable‘caes) (getArgs p g)

Preponderance of the evidence additionally requires the maximum weight of the applicable
arguments pro p to be greater than the maximum weight of the applicable arguments con p. The
weight of zero arguments is taken to be 0. As the maximal weight of applicable arguments pro and
con is a recurring theme in the definitions of several of the proof standards, we start by defining
those notions:

maxWeightApplicable :: [Argument]→ CAES →Weight
maxWeightApplicable as caes@(CAES (, (, argWeight),))
= foldl max 0 [argWeight a | a ← as, a ‘applicable‘ caes]

maxWeightPro :: PropLiteral → CAES →Weight
maxWeightPro p caes@(CAES (g , ,))
= maxWeightApplicable (getArgs p g) caes

maxWeightCon :: PropLiteral → CAES →Weight
maxWeightCon p caes@(CAES (g , ,))
= maxWeightApplicable (getArgs (negate p) g) caes

We can then define the proof standard preponderance:

preponderance :: ProofStandard
preponderance p caes = maxWeightPro p caes >maxWeightCon p caes

4

Clear and convincing evidence strengthen the preponderance constraints by insisting that the
difference between the maximal weights of the pro and con arguments must be greater than a
given positive constant β, and there should furthermore be at least one applicable argument pro
p that is stronger than a given positive constant α:

clear and convincing :: ProofStandard
clear and convincing p caes
= (mwp > alpha) ∧ (mwp −mwc > beta)

where
mwp = maxWeightPro p caes
mwc = maxWeightCon p caes

Beyond reasonable doubt has one further requirement: the maximal strength of an argument
con p must be less than a given positive constant γ; i.e., there must be no reasonable doubt:

beyond reasonable doubt :: ProofStandard
beyond reasonable doubt p caes
= clear and convincing p caes ∧ (maxWeightCon p caes < gamma)

Finally dialectical validity requires at least one applicable argument pro p and no applicable
arguments con p:

dialectical validity :: ProofStandard
dialectical validity p caes

= scintilla p caes ∧ ¬ (scintilla (negate p) caes)

0.5 Convenience functions

We provide a set of functions to facilitate construction of propositions, arguments, argument sets
and sets of assumptions. Together with the definitions covered so far, this constitute our DSL for
constructing Carneades argumentation models.

mkProp :: String → PropLiteral
mkArg :: [String]→ [String]→ String → Argument
mkArgSet :: [Argument]→ ArgSet
mkAssumptions :: [String]→ [PropLiteral]

A string starting with a ’-’ is taken to denote a negative atomic proposition.
To construct an audience, native Haskell tupling is used to combine a set of assumptions and

a weight function, exactly as it would be done in the Carneades model:

audience :: Audience
audience = (assumptions,weight)

Carneades Argument Evaluation Structures and weight functions are defined in a similar way, as
will be shown in the next subsection.

Finally, we provide a function for retrieving the arguments for a specific proposition from an
argument set, a couple of functions to retrieve all arguments and propositions respectively from
an argument set, and functions to retrieve the (not) applicable arguments or (not) acceptable
propositions from a CAES:

getArgs :: PropLiteral → ArgSet → [Argument]
getAllArgs :: ArgSet → [Argument]
getProps :: ArgSet → [PropLiteral]
applicableArgs :: CAES → [Argument]

5

nonApplicableArgs :: CAES → [Argument]
acceptableProps :: CAES → [PropLiteral]
nonAcceptableProps :: CAES → [PropLiteral]

getAllArgs :: ArgSet → [Argument]
getAllArgs g = nub $ concatMap (snd ◦ snd) (labNodes g)

getProps :: ArgSet → [PropLiteral]
getProps g = map (fst ◦ snd) (labNodes g)

applicableArgs :: CAES → [Argument]
applicableArgs c@(CAES (argSet , ,)) = filter (‘applicable‘c) (getAllArgs argSet)

nonApplicableArgs :: CAES → [Argument]
nonApplicableArgs c@(CAES (argSet , ,)) = filter (¬ ◦ (‘applicable‘c)) (getAllArgs argSet)

acceptableProps :: CAES → [PropLiteral]
acceptableProps c@(CAES (argSet , ,)) = filter (‘acceptable‘c) (getProps argSet)

nonAcceptableProps :: CAES → [PropLiteral]
nonAcceptableProps c@(CAES (argSet , ,)) = filter (¬ ◦ (‘acceptable‘c)) (getProps argSet)

contextP :: PropLiteral → AGraph → [Context (PropLiteral , [Argument]) ()]
contextP p = gsel (λ(, , a,)→ fst a ≡ p)

getArgs :: PropLiteral → AGraph → [Argument]
getArgs p g

= case contextP p g of
[] → []
((, , (, args),) :)→ args

0.6 Graph construction

We associate a graph along with a Map that stores the node number for every PropLiteral to make
construction of the AGraph easier.

type AGraph = ArgSet
type PropNode = LNode (PropLiteral , [Argument])
type AssociatedGraph = (AGraph,Map PropLiteral Node)

An argument graph is then constructed as following:

mkArgSet :: [Argument]→ ArgSet
mkArgSet = mkArgGraph

mkArgGraph :: [Argument]→ AGraph
mkArgGraph = fst ◦ foldr addArgument (empty ,Map.empty)

Carneades uses the following definition for acyclicity:

Definition 7 (Acyclic set of arguments) A list of arguments is acyclic iff its corresponding
dependency graph is acyclic. The corresponding dependency graph has nodes for every literal
appearing in the list of arguments. A node p has a directed link to node q whenever p depends on
q in the sense that there is an argument pro or con p that has q or q in its list of premises or
exceptions.

So when we add an argument (Arg premises exceptions conclusion) to our graph, we need to
add both the conclusion and its negate to the graph, adding edges for both to all premises and
exceptions while adding the argument to the list of arguments for conclusion as well.

6

addArgument :: Argument → AssociatedGraph → AssociatedGraph
addArgument arg@(Arg (prem, exc, c)) gr =

let deps = prem ++ exc
(gr ′,nodeNr) = addArgument ′ arg gr
(gr ′′,nodeNr ′) = addNode (negate c) gr ′

in addEdges nodeNr ′ deps $ addEdges nodeNr deps gr ′′

addToContext :: Argument → (Context (PropLiteral , [Argument]) (),AGraph)→ AGraph
addToContext arg ((adjb,n, (p, args), adja), g ′) = (adjb,n, (p, arg : args), adja) & g ′

unsafeMatch :: Graph gr ⇒ Node → gr a b → (Context a b, gr a b)
unsafeMatch n g = mapFst fromJust $ match n g

Add an argument to the graph. If there is no node present yet for the conclusion insert it, in
both cases add the argument to the context of the conclusion.

addArgument ′ :: Argument → AssociatedGraph → (AssociatedGraph,Node)
addArgument ′ arg@(Arg (, , c)) (g ,m)
= case Map.lookup c m of

Nothing → ((insNode (nodeNr , (c, [arg])) g ,
Map.insert c nodeNr m),

nodeNr)
Just n → ((addToContext arg (unsafeMatch n g),

m),
n)

where nodeNr = Map.size m + 1

Add a proposition to the graph.

addNode :: PropLiteral → AssociatedGraph → (AssociatedGraph,Node)
addNode p gr@(g ,m)
= case Map.lookup p m of

Nothing → ((insNode (nodeNr , (p, [])) g ,Map.insert p nodeNr m),nodeNr)
Just n → (gr ,n)

where nodeNr = Map.size m + 1

For a specific node, add an edge for every PropLiteral in the list for the given graph.

addEdges :: Node → [PropLiteral]→ AssociatedGraph → AssociatedGraph
addEdges n ps (g ,m) = addEdges ′ n (map (fromJust ◦ flip Map.lookup m ′) ps) (g ′,m ′) -- addEdges’ c n ps (g’, m’)
where nodeNr = Map.size m + 1

newProps = filter ((≡ Nothing) ◦ flip Map.lookup m) ps
g ′ = insNodes (propsToNodes newProps nodeNr) g
m ′ = Map.union m ◦Map.fromList $ zip newProps [nodeNr . .]

Generate unlabelled edges from a Node to a list of Nodes and add it to the graph.

addEdges ′ :: Node → [Node]→ AssociatedGraph → AssociatedGraph
addEdges ′ c ps (g ,m) = (insEdges edges ′ g ,m)
where edges ′ = map (genEdge c) ps

genEdge k l = (k , l , ())

Some useful functions.

propsToNodes :: [PropLiteral]→ Node → [PropNode]
propsToNodes ps n = zip [n . .] (map (λp → (p, [])) ps)

7

checkCycle :: AGraph → Bool
checkCycle = cyclic

-- checkCycle = not . null . cyclesIn

mkProp :: String → PropLiteral
mkProp (’-’ : s) = mapFst ¬ (mkProp s)
mkProp s = (True, s)

mkAssumptions :: [String]→ [PropLiteral]
mkAssumptions = map mkProp

mkArg :: [String]→ [String]→ String → Argument
mkArg ps es c = Arg ((map mkProp ps), (map mkProp es), (mkProp c))

0.7 Implementing a CAES

This subsection shows how an argumentation theorist given the Carneades DSL developed in this
section quickly and at a high level of abstraction can implement a Carneades argument evaluation
structure and evaluate it as well. We revisit the arguments from Section ?? and assume the
following:

arguments = {arg1 , arg2 , arg3},
assumptions = {kill ,witness,witness2 , unreliable2},

standard(intent) = beyond-reasonable-doubt ,

standard(x) = scintilla, for any other proposition x,

α = 0.4, β = 0.3, γ = 0.2.

Globally predefined alpha, beta and gamma.

alpha, beta, gamma :: Double
alpha = 0.4
beta = 0.3
gamma = 0.2

alpha, beta, gamma :: Double
alpha = 0.4
beta = 0.3
gamma = 0.2

Arguments and the argument graph are constructed by calling mkArg and mkArgSet respec-
tively:

arg1 , arg2 , arg3 :: Argument
arg1 = mkArg ["kill", "intent"] [] "murder"
arg2 = mkArg ["witness"] ["unreliable"] "intent"
arg3 = mkArg ["witness2"] ["unreliable2"] "-intent"

argSet :: ArgSet
argSet = mkArgSet [arg1 , arg2 , arg3]

The audience is implemented by defining the weight function and calling mkAssumptions on
the propositions which are to be assumed. The audience is just a pair of these:

weight :: ArgWeight
weight arg | arg ≡ arg1 = 0.8

8

weight arg | arg ≡ arg2 = 0.3
weight arg | arg ≡ arg3 = 0.8
weight = error "no weight assigned"

assumptions :: [PropLiteral]
assumptions = mkAssumptions ["kill", "witness", "witness2", "unreliable2"]

audience :: Audience
audience = (assumptions,weight)

Finally, after assigning proof standards in the standard function, we form the CAES from the
argument graph, audience and function standard :

standard :: PropStandard
standard (, "intent") = BeyondReasonableDoubt
standard = Scintilla

caes :: CAES
caes = CAES (argSet , audience, standard)

We can now try out the argumentation structure.

getAllArgs argSet
> [["witness2"] ∼["unreliable2"]⇒ "-intent",

["witness"] ∼["unreliable"] ⇒ "intent",
["kill", "intent"]∼[] ⇒ "murder"]

Then, as expected, there are no applicable arguments for −intent , since unreliable2 is an
exception, but there is an applicable argument for intent , namely arg2 :

filter (‘applicable‘caes) $ getArgs (mkProp "intent") argSet
> [["witness"]⇒ "intent"]

filter (‘applicable‘caes) $ getArgs (mkProp "-intent") argSet
> []

Despite the applicable argument arg2 for intent , murder should not be acceptable, because
the weight of arg2 < α. However, note that we can’t reach the opposite conclusion either:

acceptable (mkProp "murder") caes
> False
acceptable (mkProp "-murder") caes
> False

As a further extension, one could for example imagine giving an argumentation theorist the
means to see a trace of the derivation of acceptability. It would be straightforward to add further
primitives to the DSL and keeping track of intermediate results for acceptability and applicability
to achieve this.

testAppIntent :: [Argument]
testAppIntent = filter (‘applicable‘caes) $ getArgs (mkProp "intent") argSet

testAppNotIntent :: [Argument]
testAppNotIntent = filter (‘applicable‘caes) $ getArgs (mkProp "-intent") argSet

testAppMurder :: [Argument]
testAppMurder = filter (‘applicable‘caes) $ getArgs (mkProp "murder") argSet

testAppNotMurder :: [Argument]
testAppNotMurder = filter (‘applicable‘caes) $ getArgs (mkProp "-murder") argSet

testMurder :: Bool

9

testMurder = acceptable (mkProp "murder") caes

testNotMurder :: Bool
testNotMurder = acceptable (mkProp "-murder") caes

10

